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In the evolving landscape of science, engineering, and technology, calculus remains a
fundamental tool for understanding change, modeling complex systems, and solving
real-world problems. From the classical challenges of motion and geometry to modern
applications in data science, optimization, and engineering, calculus provides a uni-
fying language that bridges theory and practice. By mastering its core concepts and
techniques, students and practitioners can analyze dynamic processes, make informed
decisions, and develop models that foster innovation and excellence across disciplines.

This book, Calculus and Its Applications: Mathematical Techniques, offers a structured
and comprehensive introduction to calculus. Beginning with the foundations of real
numbers and the essentials of functions, readers are gradually guided through special
functions, limits, and the core principles of derivatives. Building on these fundamentals,
the text explores both the applications of derivatives in optimization and modeling, as
well as the theory and practice of indefinite integrals and their wide-ranging applications.
The journey concludes with a discussion of transcendental functions, connecting classical
concepts to advanced and contemporary challenges.

Beyond theory, the book emphasizes practical applications—showing how calculus un-
derpins decision-making, system optimization, and problem-solving in diverse fields.
Each chapter integrates concepts with examples that reflect both traditional mathe-
matical problems and modern technological contexts.

Through this approach, readers will not only develop a strong understanding of the
mathematical principles of calculus but also gain the skills to apply them effectively to
real-world challenges—fulfilling the book’s vision of connecting classical problems with
modern challenges.
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• A solid foundation in real numbers, functions, and limits
• The ability to analyze and interpret data across engineering and scientific contexts
• A clear understanding of the role of derivatives and integrals in modeling and

problem-solving
• Practical skills in applying numerical methods and calculus techniques to real-

world challenges

This book is designed for beginners seeking to build a strong foundation in calculus
while appreciating its concepts and diverse applications—from classical mathematical
problems to modern scientific and engineering challenges. We value the active partic-
ipation of readers, whose insights and questions enrich the learning journey. It is our
hope that this material serves not only as an introduction to calculus but also as a
practical guide for applying mathematical reasoning to contemporary problems.

Feedback & Suggestions

Your feedback is invaluable in enhancing the quality of this book. We warmly invite
readers to share their thoughts on the content, organization, and clarity of the ma-
terial. Suggestions for additional topics, extended explanations, or further real-world
applications are highly encouraged.

With your support and contributions, our goal is to make this book a comprehensive and
accessible resource on calculus and its applications—from classical problems to modern
challenges. Thank you for your engagement and feedback.

For feedback and suggestions, please contact:

• siregarbakti@gmail.com

• siregarbakti@itsb.ac.id
• dsciencelabs@outlook.com



Chapter 1

Introduction to Calculus

Calculus (Mathematical Techniques) is the mathematics of change and motion,
offering powerful tools to model dynamic systems, solve complex problems, and make
predictions in science, engineering, and technology. Mastery of calculus enables us to
analyze diverse real-world phenomena, from the path of a moving object to the efficient
allocation of resources.

The Figure 1.1 presents a visual overview of the chapter, highlighting the structure of
key topics and their interconnections. It provides readers with a clear guide to navigate
the material and understand how concepts link to applications.

INTRODUCTION
TO

CALCULUS

Real Numbers

Essentials of Functions

Special Functions

Limits of Functions

Basic Derivatives

Applied of Derivatives

Indefinite Integrals

Applied of Integrals

Transcendental Functions

Scientific Measurement

Engineering Constants

Unit Conversions

Modeling Relationships

Growth/Decay

Population Dynamics

Exponential Growth

Logarithms in Finance

Compound Interest Calculations

Continuity

Instantaneous Rate of Change

Numerical Approximations

Velocity/Acceleration

Slope of Curve

Tangents to Graphs

Optimization

Cost Minimization

Engineering Design Problems

Antiderivatives

Area Under Curve

Velocity-Displacement Relationship

Work

Total Accumulated Quantity

Center of Mass

Natural Phenomena

Waves

Circuits

Signal Processing

Figure 1.1: Mind Map of Introduction to Calculus
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6 CHAPTER 1. INTRODUCTION TO CALCULUS

Table 1.1: Matrix Transformation

Property Description Example
Closure Operations on real numbers yield

real numbers
𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎/𝑏 (if 𝑏 ≠ 0)

Order Real numbers can be compared
and ordered

𝑎 < 𝑏 → comparing magnitudes

Density There is always another real
number \ between two numbers

∃𝑐 ∶ 𝑎 < 𝑐 < 𝑏 \ → interpolation

Absolute Value Measures distance from zero |𝑎| → distance from zero
Scientific Measurement Represent measurable physical

quantities
𝑔 = 9.8 m/s2

Engineering Constants Constants used in formulas \ and
modeling

𝐸, 𝑐 = 3 × 108 m/s

This chapter introduces the fundamental building blocks of calculus, including real
numbers, functions, limits, derivatives, integrals, and transcendental functions. Each
concept is connected to practical applications to illustrate how calculus underpins real-
world problem-solving.

1.1 Real Numbers

Real numbers are the foundation of all calculus concepts, forming the set of num-
bers that includes integers, fractions, and decimals. They are essential for performing
calculations, defining functions, and understanding limits, derivatives, and integrals.
A solid understanding of real numbers allows us to work with continuous quantities,
measure physical phenomena, and apply mathematical reasoning in real-world contexts.
The key properties, descriptions, and typical applications of real numbers are summa-
rized in Table 1.1.

1.2 Essentials of Functions

Functions describe relationships between variables, showing how one quantity changes
with another. They are fundamental in calculus as they provide mathematical mod-
els for dynamic systems, patterns, and processes across science, engineering, and eco-
nomics. A proper understanding of functions requires knowledge of their domain,
range, types, and behavior. An overview of the key concepts, descriptions, and
applications is given in Table 1.2.

1.3 Special Functions

Special functions are widely used in science, engineering, and applied mathematics be-
cause they model specific natural or engineered phenomena. Extending be-
yond simple polynomials, they play a central role in solving real-world problems across
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Table 1.2: Key Concepts of Functions

Key Concept Description Example / Application
Definition Maps each 𝑥 in domain to a

unique 𝑦 in range
𝑓 ∶ 𝑥 ↦ 𝑦

Domain and Range Domain = all possible inputs,
Range = all outputs

𝑥 ∈ [0, 10], 𝑓(𝑥) ∈ [0, 100]

Linear Function Straight-line relationship 𝑓(𝑥) = 𝑚𝑥 + 𝑏
Quadratic Function Parabolic relationship 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐
Polynomial Function Sum of powers of 𝑥 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎0
Exponential Function Rapid growth or decay 𝑃(𝑡) = 𝑃0𝑒𝑟𝑡 \ (population

growth)
Trigonometric Function Models periodic behavior 𝑇 (𝑡) = 𝑇𝑎𝑣𝑔 + 𝐴 sin ( 2𝜋

24 𝑡) \
(temperature changes)

Table 1.3: Exponential, Logarithmic, and Trigonometric Functions

KeyConcept Description ExampleApplication
Exponential Functions 𝑓(𝑥) = 𝑎𝑒𝑏𝑥; models growth and

decay
Compound interest: 𝐴 = 𝑃𝑒𝑟𝑡

Logarithmic Functions 𝑓(𝑥) = log𝑏(𝑥); inverse of exponential pH scale, sound intensity
measurements

Trigonometric Functions 𝑓(𝑥) = sin 𝑥, cos 𝑥, tan 𝑥; models
periodic behavior

Pendulum motion:
𝜃(𝑡) = 𝜃0 cos(𝜔𝑡 + 𝜙)

physics, chemistry, biology, and finance. A structured overview of their main types,
descriptions, and applications is provided in Table 1.3.

1.4 Limits of Functions

Limits reveal how functions behave as inputs get closer to a given value. They are
essential in calculus, laying the groundwork for derivatives and continuity. With limits,
we can explore instantaneous change, refine approximations, and resolve problems where
direct evaluation fails. An overview of the main ideas and applications appears in
Table 1.4.

Table 1.4: Key Concepts in Limits and Continuity

KeyConcept Description ExampleApplication
Definition lim𝑥→𝑎 𝑓(𝑥) = 𝐿; the value 𝑓(𝑥)

approaches as 𝑥 → 𝑎
Approximating function values:
lim𝑥→0

sin 𝑥
𝑥 = 1

One-sided Limits Limits approaching from left
(𝑥 → 𝑎−) or right (𝑥 → 𝑎+)

Instantaneous velocity from
left/right time intervals

Continuity 𝑓 is continuous at 𝑥 = 𝑎 if
lim𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎)

Ensuring smooth motion or
consistent output in physical systems
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Table 1.5: Key Concepts in Derivatives

KeyConcept Description ExampleApplication

Definition 𝑓 ′(𝑥) = limΔ𝑥→0
𝑓(𝑥+Δ𝑥)−𝑓(𝑥)

Δ𝑥 ; rate of
change at 𝑥

Instantaneous velocity: 𝑣(𝑡) = 𝑠′(𝑡)

Interpretation Slope of tangent line; instantaneous
rate of change

Slope of a hill: 𝑚 = ℎ′(𝑥)

Basic Rules Power rule, sum rule, constant
multiple rule

𝑑
𝑑𝑥 𝑥𝑛 = 𝑛𝑥𝑛−1, 𝑑

𝑑𝑥 [𝑓 + 𝑔] = 𝑓 ′ + 𝑔′

Table 1.6: Applications of Derivatives

KeyConcept Description ExampleApplication

Optimization Find maxima or minima by solving
𝑓′(𝑥) = 0 \ and checking 𝑓″(𝑥)

Maximize profit: 𝑃 ′(𝑥) = 0

Rate of Change Quantifies how one variable changes \ with
respect to another

Velocity: 𝑣(𝑡) = 𝑠′(𝑡)

Critical Points Points where 𝑓′(𝑥) = 0 or undefined; \
used to find maxima, minima, or inflection
points

Minimizing cost: 𝐶′(𝑥) = 0; \ analyzing
structure stress

Motion Analysis Derivatives of position give \ velocity and
acceleration

𝑣(𝑡) = 𝑠′(𝑡), 𝑎(𝑡) = 𝑠″(𝑡)

1.5 Basic Derivatives

Derivatives quantify how a function changes with respect to its input, capturing
slopes, rates of change, and tangent behavior. They play a central role in calculus
by enabling the analysis of motion, growth, optimization, and a wide range of dynamic
processes. Key concepts, descriptions, and applications are summarized in Table 1.5.

1.6 Applied Derivatives

Applied derivatives illustrate how differentiation is used to solve real-world problems
across engineering, economics, physics, and other fields. By examining rates of change,
extrema, and concavity, derivatives provide tools for optimizing processes, predicting
behavior, and supporting decision-making. Key concepts, descriptions, and applications
are summarized in Table 1.6.

1.7 Indefinite Integrals

Indefinite integrals, or antiderivatives, undo the process of differentiation, enabling
us to recover the original function from its derivative. They represent accumulated
quantities such as displacement, total growth, or total charge. The Table 1.7 below
summarizes key concepts, descriptions, and example applications:
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Table 1.7: Indefinite Integrals

KeyConcept Description ExampleApplication

Definition 𝐹 ′(𝑥) = 𝑓(𝑥); ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 Displacement: 𝑠(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡; e.g.,
𝑣(𝑡) = 3𝑡2 ⟹ 𝑠(𝑡) = 𝑡3 + 𝐶

Power Rule ∫ 𝑥𝑛𝑑𝑥 = 𝑥𝑛+1
𝑛+1 + 𝐶, 𝑛 ≠ −1 Integration of 𝑥2 gives 𝑥3

3 + 𝐶
Constant Multiple ∫ 𝑐𝑓(𝑥)𝑑𝑥 = 𝑐 ∫ 𝑓(𝑥)𝑑𝑥 Multiply constant with integral
Sum Rule ∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 ∫(𝑥2 + 2𝑥)𝑑𝑥 = 𝑥3

3 + 𝑥2 + 𝐶
Total Accumulation Accumulation of quantity over time Revenue: ∫ 𝑅(𝑡)𝑑𝑡

Table 1.8: Definite Integrals

KeyConcept Description ExampleApplication

Definite Integral Total accumulation of a quantity over
interval [𝑎, 𝑏]: ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥
Area under curve: ∫2

0 𝑥2𝑑𝑥 = 8
3

Area Under a Curve Calculates area between function and
x-axis

Same as above

Physical Applications Integrals for work, mass, charge, revenue Mass: 𝑀 = ∫𝑏
𝑎 𝜌(𝑥)𝑑𝑥, Work:

𝑊 = ∫𝑏
𝑎 𝐹(𝑥)𝑑𝑥

1.8 Applied Integrals

Transcendental functions are those that cannot be represented as finite polyno-
mials, including exponential, logarithmic, trigonometric, and inverse trigono-
metric functions. They play a central role in mathematics, physics, engineering, and
the applied sciences by modeling complex natural and engineered phenomena. Key
types, descriptions, and example applications are summarized in Table 1.8.

1.9 Transcendental Functions

Transcendental functions are functions that cannot be expressed as finite poly-
nomials. They include exponential, logarithmic, trigonometric, and inverse
trigonometric functions, and are essential in advanced mathematics, physics, engi-
neering, and applied sciences for modeling complex phenomena. Transcendental func-
tions are used to model complex phenomena in science and engineering in the table
Table 1.9.

Table 1.9: Special Functions

KeyConcept Description ExampleApplication

Exponential Functions 𝑓(𝑥) = 𝑒𝑥 or 𝑎𝑥, model growth and decay RC circuit voltage: 𝑉 (𝑡) = 𝑉0(1 − 𝑒−𝑡/𝑅𝐶)
Logarithmic Functions 𝑓(𝑥) = ln 𝑥 or log𝑎 𝑥, used in scaling Measuring pH, sound intensity
Trigonometric Functions 𝑓(𝑥) = sin 𝑥, cos 𝑥, tan 𝑥, model periodic

behavior
Wave motion: 𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)

Inverse Trigonometric Functions 𝑓(𝑥) = arcsin 𝑥, arccos 𝑥, arctan 𝑥, solving
angles

Population oscillations:
𝑃(𝑡) = 𝑃avg + 𝐴 cos(𝜔𝑡 + 𝜙)
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Chapter 2

Real Numbers

Understanding Real Numbers (ℝ) is the first step in exploring the world of real
analysis. These numbers serve as the essential building blocks for calculus, algebra,
numerical modeling, and various applied sciences. They provide a framework for rep-
resenting quantities, measuring change, and describing continuous processes in both
mathematics and real-world applications [1]–[3].

To help navigate the key aspects of real numbers, the Figure 2.1 offers a 5W+1H mind
map. This visualization guides learners through the What—definitions and subsets;
the Why—their importance and significance; the When—historical discoveries and
formalization; the Where—applications in science, engineering, economics, and daily
life; the Who—mathematicians and everyday users; and the How—representation on
the number line, decimal forms, and intervals. By following this map, one can see not
just the numbers themselves, but their role and relevance across disciplines.

The following Table 2.1 presents a structured summary of the 5W+1H questions
related to Real Numbers, based on the Figure 2.1 mind map. It organizes the mate-
rial into categories—What, Why, When, Where, Who, How—to guide learners
in understanding the definitions, subsets, properties, number line representation, and
applications of real numbers in science, engineering, economics, and daily life.

2.1 Definition

The real numbers (ℝ) are the set of numbers that include both rational numbers (frac-
tions of integers) and irrational numbers (numbers that cannot be expressed as frac-
tions). They can be represented on the number line, which extends infinitely in both
positive and negative directions [1], [2].

Formally:

ℝ = {𝑥 ∣ 𝑥 corresponds to a point on the number line}.

11



12 CHAPTER 2. REAL NUMBERS

Table 2.1: 5W+1H Questions for Real Numbers

Question Notes
WHAT?

What are real numbers (ℝ)? Definition of real numbers
What are the subsets of real
numbers?

Natural, Whole, Integers,
Rational, Irrational

What is the difference between
rational and irrational numbers?

Rational can be expressed as p/q,
irrational cannot

What are the key properties of
real numbers?

Closure, Commutative,
Associative, Distributive,
Identity, Inverse

WHY?

Why are real numbers important
in mathematics?

Used in mathematics, science,
engineering, daily life

Why do we need to know
properties like closure and
distributive law?

Ensures operations are valid
within real numbers

Why are irrational numbers
significant in science and
engineering?

Irrational numbers appear in
physics, geometry, engineering
constants

WHEN?

When were irrational numbers
discovered?

Ancient Greek mathematicians
discovered √2

When did mathematicians
formalize the set of real numbers?

Formalized in 19th century by
Dedekind and Cantor

When do we use real numbers in
real-life applications?

Used in measurement, finance,
statistics, and computations

WHERE?

Where are real numbers applied
in science and engineering?

Physics formulas, engineering
measurements, chemistry
calculations

Where can real numbers be
observed in daily life?

Counting, money, time, distances

Where in mathematics do we
need to distinguish rational and
irrational numbers?

Algebra, number theory,
functions

WHO?

Who were the key
mathematicians in the
development of real numbers?

Euclid, Cantor, Dedekind

Who uses real numbers most
frequently in practical
applications?

Scientists, engineers,
mathematicians

Who introduced the concept of
number line and interval
representation?

Mathematicians formalized
number line representation

HOW?

How are real numbers represented
on the number line?

Graphically as points on the
number line

How do we write rational
numbers in decimal form?

Terminating, repeating, or
non-repeating decimals

How do we express intervals using
real numbers?

Using [a,b] or (a,b) interval
notation

How do real numbers help in
calculations and problem-solving?

Supports problem solving and
calculations in real-world
scenarios
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THE
REAL NUMBERS

What?

Why?

When?

Where?

Who?

How?

Definition & Subsets

Natural Numbers (ℕ)

Whole Numbers

Integers (ℤ)

Rational Numbers (ℚ)

Irrational Numbers

Properties & Importance

Closure

Commutative

Associative

Distributive

Identity

Inverse

Historical Discovery

Applications

Science & Engineering

Economics

Daily Life

Mathematicians & Scientists

Number Line

Decimal Form

Interval Notation

Figure 2.1: Real Numbers with 5W+1H Notes

2.2 Subsets of Real Numbers

Real numbers (ℝ) consist of several subsets, each with distinct properties and appli-
cations. Understanding these subsets is fundamental in mathematics, physics, and
engineering.

2.2.1 Natural Numbers (ℕ)

Natural numbers are the set of positive counting numbers used for enumerating objects.
Formally, the set of natural numbers is written as

ℕ = {1, 2, 3, 4, … }.

Natural numbers have several important properties. They are always positive, and
they are closed under addition and multiplication. However, they are not closed under
subtraction or division; for example, 2 − 3 ∉ ℕ. Some examples of natural numbers
include 1, 2, 3, 10, 100, and so on. These numbers are widely used in everyday life and in
mathematics for counting discrete objects, numbering sequences, and performing basic
arithmetic operations.
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2.2.2 Whole Numbers

Whole numbers extend natural numbers by including zero. Formally, the set of whole
numbers is written as

Whole Numbers = {0, 1, 2, 3, … }.

Whole numbers have several important properties. They are non-negative and are
closed under addition and multiplication. However, they are not closed under subtrac-
tion; for example, 0 − 1 ∉ Whole Numbers. Some examples of whole numbers include
0, 1, 2, 50, 1000, and so on. Whole numbers are widely used in numbering positions,
indexing in programming, and counting objects when zero is included.

2.2.3 Integers (ℤ)

Integers include all whole numbers and their negative counterparts. Formally, the set
of integers is written as

ℤ = {… , −3, −2, −1, 0, 1, 2, 3, … }.

Integers have several important properties. They are closed under addition, subtrac-
tion, and multiplication, but they are not closed under division; for example, 1/2 ∉ ℤ.
Some examples of integers include −10, −1, 0, 3, 15, and so on. Integers are widely used
for representing gains and losses, elevations, temperatures, and positions relative to a
reference point.

2.2.4 Rational Numbers (ℚ)

Rational numbers are numbers that can be expressed as a fraction 𝑝
𝑞 where 𝑝, 𝑞 ∈ ℤ and

𝑞 ≠ 0. Formally, the set of rational numbers is written as

ℚ = {𝑝
𝑞 ∣ 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0} .

Rational numbers have several important properties. They can be positive, negative,
or zero, and they are closed under addition, subtraction, multiplication, and division
(except division by zero). They can also be represented as terminating or repeating
decimals. Some examples of rational numbers include 1

2 , − 7
3 , 0.75, and 0.333 …. Ratio-

nal numbers are widely used in fractions for measurements, probabilities, ratios, and
proportional relationships.

2.2.5 Irrational Numbers

Irrational numbers cannot be expressed as a fraction 𝑝
𝑞 with integers 𝑝 and 𝑞, and

their decimal expansions are non-terminating and non-repeating. They can be positive
or negative and are generally closed under addition, subtraction, multiplication, and



2.3. PROPERTIES OF REAL NUMBERS 15

sometimes division, but they cannot be represented exactly as a fraction. Examples
of irrational numbers include 𝜋, 𝑒,

√
2,

√
3, and ln 2. These numbers are widely used

in geometry, such as 𝜋 for circles, in calculus, in physical constants, and in modeling
exponential growth or decay.

2.3 Properties of Real Numbers

The set of real numbers (ℝ) follows several fundamental rules that govern arithmetic
operations, essential in algebra, calculus, and applied mathematics.

2.3.1 Closure

ℝ is closed under addition and multiplication, meaning the sum or product of any
two members is still a real number. Division by zero is the only exception.

2.3.2 Commutative

Addition and multiplication are commutative, so the order of numbers does not affect
the result:

𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.

2.3.3 Associative

Grouping of numbers does not change the outcome, reflecting the associative rule for
both operations:

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐).

2.3.4 Distributive

Multiplication distributes over addition, meaning multiplying a number by a sum equals
multiplying each term individually and then adding:

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐.

2.3.5 Identity

There exist identities for addition and multiplication. Adding 0 or multiplying by 1
leaves any number unchanged:

𝑎 + 0 = 𝑎 and 𝑎 ⋅ 1 = 𝑎.
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2.3.6 Inverse

Every number has additive and multiplicative inverses (except zero for multipli-
cation). The additive inverse −𝑎 satisfies 𝑎 + (−𝑎) = 0, and the reciprocal 1

𝑎 satisfies
𝑎 ⋅ 1

𝑎 = 1.

2.4 Representation on Number Line

Figure Figure 2.2 illustrates a number line, a visual tool representing real numbers in
order, which helps to clearly understand their relative positions and relationships.

0

1 2 3 4 5

-1-2-3-4-5

0.5 1.5-0.5-1.5

1.414

1.732

-1.414

-1.732

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Zero
Positive	Numbers
Negative	Numbers
Rational	Numbers
Irrational	Numbers

Real	Numbers

Figure 2.2: Representation on Number Line

The number line is a fundamental visual tool in mathematics that allows us to represent
real numbers in order. It provides a clear way to understand the relative positions of
numbers, including zero as the central reference point, positive numbers to the right,
and negative numbers to the left. Rational numbers can be located precisely on the
line, while irrational numbers occupy approximate positions between integers, filling in
the gaps and illustrating the density of real numbers. The key concepts summarized in
Table Table 2.2 highlight the main categories and their properties, helping to organize
the understanding of real numbers on the number line.
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Table 2.2: Key Concepts of Number Line

Concept Description Notes
Zero as Center Central reference point separating positive

and negative numbers.
Acts as reference for measuring distance
and direction (Figure 2.2)

Positive Numbers Numbers greater than zero placed to the
right of the origin; includes natural, whole,
and positive fractions or decimals.

Magnitude increases to the right of zero

Negative Numbers Numbers less than zero placed to the left
of the origin; represents deficits, losses, or
positions below reference.

Includes negative fractions and decimals

Rational Numbers Numbers expressible as fractions or
terminating/repeating decimals; located
exactly on the number line.

Each fraction corresponds to a precise
point between integers

Irrational Numbers Numbers not exactly expressible as
fractions; approximate positions between
integers filling in the gaps.

Examples: �, √2, e; shows density of real
numbers

Table 2.3: Applications of Real Numbers with Examples

Domain Description Examples
Science & Engineering Used to model measurements, physical quantities,

and constants such as distance, mass, temperature,
and speed; essential for calculations, simulations,
and analyses in physics, chemistry, and engineering
design.

Distance = 12.5 m, Temperature = 36.6°C,
Speed = 60 km/h

Economics Represents prices, costs, profits, interest rates, and
statistical data; allows precise modeling of financial
transactions, economic trends, and optimization
problems.

Price = $25.50, Profit = $1200, Interest
rate = 3.5%

Daily Life Appears in counting money, measuring lengths or
weights, telling time, and evaluating percentages;
supports planning, cooking, shopping, and daily
quantitative decision-making.

Buying 3 apples, Cooking 250 g flour,
Meeting at 14:30

2.5 Applications of Real Numbers

Real numbers play a crucial role in many fields because they can represent continuous
quantities, perform precise measurements, and quantify relationships. Table Table 2.3
summarizes their main applications in science and engineering, economics, and everyday
life.



18 CHAPTER 2. REAL NUMBERS



Chapter 3

Essencials of Functions

Understanding Functions is fundamental in mathematics, as they describe the relation-
ship between quantities and form the backbone of calculus, algebra, numerical modeling,
and applied sciences. Functions allow us to model change, describe systems, and solve
real-world problems [1]–[3].

The Figure 3.1 provides a 5W+1H mind map for functions. This visualization guides
learners through:

• What — definition, domain, range, and types of functions?.
• Why — importance and applications in math and science?.
• When — historical development and formalization?.
• Where — areas of application in engineering, physics, economics, and daily life?.
• Who — mathematicians and practitioners using functions?.
• How — representation through equations, tables, graphs, and intervals?.

Functions are one of the core concepts in mathematics, playing a central role in mod-
eling, analysis, and real-world applications. Using the 5W+1H framework
(What, Why, When, Where, Who, How), we can explore functions from multiple
perspectives: their definition, importance, historical development, fields of application,
key contributors, and different forms of representation.

Table Table 3.1 summarizes the key questions and provides illustrative examples of
functions along with their interpretations for each 5W+1H category.

3.1 Definition

Functions are one of the core concepts in mathematics, playing a central role in mod-
eling, analysis, and real-world applications. Using the 5W+1H framework
(What, Why, When, Where, Who, How), we can explore functions from multiple
perspectives: their definition, importance, historical development, fields of application,
key contributors, and different forms of representation.

19
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Table 3.1: 5W+1H Questions for Functions

Description Example_Function Example_Output
What?

What? What is a function? 𝑓 ∶ 𝑋 → 𝑌 Each input → exactly one output
What? What are the domain and range? 𝑓(𝑥) = 𝑥2, Domain = ℝ, Range =

[0, ∞)
Domain all inputs; Range all
outputs

What? What types of functions exist? Linear, Quadratic, Polynomial,
Exponential, Trigonometric

Example: 𝑓(𝑥) = 2𝑥 + 1,
𝑓(𝑥) = 𝑥2 − 3

What? What are the key properties of
functions?

Injective, Surjective, Bijective,
Continuous, Monotone

e.g. 𝑓(𝑥) = 𝑥2 is not injective on
ℝ

Why?

Why? Why are functions important in
mathematics?

Modeling 𝑦 = 𝑓(𝑥) relationships Predict outcomes, solve equations

Why? Why do we need to understand
function properties?

Analyzing 𝑓(𝑥) before applying to
problems

Correct manipulation of 𝑓(𝑥)

When?

When? When was the function concept
formalized?

17th century (Leibniz, Euler) Formalized in 1600s

When? When are functions applied in
real-life problems?

Finance: 𝐴(𝑡) = 𝑃(1 + 𝑟)𝑡;
Physics: 𝑠(𝑡) = 𝑣0𝑡 + 1

2 𝑎𝑡2
Applications in simulations and
modeling

Where?

Where? Where are functions used in
science and engineering?

Ohm’s law: 𝑉 = 𝐼𝑅, Newton’s
law: 𝐹 = 𝑚𝑎

Used in circuits, mechanics,
chemistry

Where? Where can functions be observed
in economics and daily life?

Population growth 𝑃(𝑡) = 𝑃0𝑒𝑟𝑡 Used in demand curves,
budgeting

Who?

Who? Who were key mathematicians in
developing function theory?

Euler, Leibniz, Dirichlet Pioneers in function theory

Who? Who uses functions in practical
applications?

Scientists, engineers, economists Real-world users across disciplines

How?

How? How are functions represented
using equations?

𝑓(𝑥) = 𝑥2, 𝑓(𝑥) = sin 𝑥 Symbolic form representation

How? How are functions represented
using tables?

Tabular form: (𝑥, 𝑓(𝑥)) pairs Input-output lookup

How? How are functions represented
using graphs or intervals?

Graph of 𝑓(𝑥), interval [𝑎, 𝑏] Visual/geometric representation
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FUNCTIONS

What?

Why?

When?

Where?

Who?

How?

Definition

Domain

Range

Types

Properties

Importance

History

Applications

Key Mathematicians

Representation

Linear: f(x) = m*x + b

Quadratic: f(x) = a*x^2 + b*x + c

Polynomial: f(x) = a_n*x^n + ... + a_0

Exponential: f(x) = a^x

Logarithmic: f(x) = log_a(x)

Trigonometric: f(x) = sin(x), cos(x), tan(x)

Injective (One-to-One)

Surjective (Onto)

Bijective (One-to-One & Onto)

Continuous

Monotone (Increasing/Decreasing)

Modeling

Prediction

Problem Solving

Physics & Engineering:
motion, circuits, thermodynamics

Economics & Finance:
interest, growth, supply-demand

Daily Life:
fuel use, battery decay, cooking temp-time

Mining & Resources: Ore production,
Mineral concentration, Total Cost, Volume

Equations

Tables

Graphs

Intervals

Figure 3.1: Detailed 5W+1H for Functions

A function 𝑓 from set 𝑋 to set 𝑌 is a rule that assigns exactly one element of 𝑌 to
each element of 𝑋. Formally:

𝑓 ∶ 𝑋 → 𝑌 such that ∀𝑥 ∈ 𝑋, ∃!𝑦 ∈ 𝑌 with 𝑦 = 𝑓(𝑥)

• Domain: the set of all inputs 𝑋

• Range: the set of all outputs 𝑌

This definition ensures that every input has one and only one output, which distin-
guishes functions from more general relations. For example, consider 𝑓(𝑥) = 𝑥2 with
domain ℝ. Each real number 𝑥 is mapped to a single nonnegative real number 𝑦 = 𝑥2.
In this case, the domain is ℝ and the range is ℝ≥0.

3.2 Types of Functions

Functions are fundamental tools in mathematics that describe the relationship between
two quantities, typically denoted as an input 𝑥 and an output 𝑓(𝑥). Each type of
function has its own characteristics, shape, and application in real-world problems.
Understanding these different types of functions is crucial not only in pure mathematics
but also in various applied fields such as engineering, economics, physics, and mining
engineering, where they are used to model growth, decay, oscillations, and relationships
between variables.
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Broadly, functions can be categorized into several groups, such as algebraic functions
(linear, quadratic, polynomial), transcendental functions (exponential and logarithmic),
and trigonometric functions (sine, cosine, tangent).

3.2.1 Algebraic

Algebraic functions (Figure Figure 3.2) are functions that can be expressed using a finite
number of algebraic operations such as addition, subtraction, multiplication, division,
and raising to a power. These functions form the foundation of many mathematical
models and are widely applied in real-life problem solving.

The main types of algebraic functions include:

• Linear Function: 𝑓(𝑥) = 𝑚𝑥 + 𝑏, which produce straight-line graphs and repre-
sent constant rates of change.

• Quadratic Function: 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, which generate parabolic curves and
are often used to model acceleration, projectile motion, or optimization problems.

• Polynomial Function: 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎0 , which extend the idea of linear
and quadratic functions to higher degrees, allowing the modeling of more complex
relationships.
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Figure 3.2: Algebraic Functions: Linear, Quadratic, and Polynomial (Side by Side)



3.2. TYPES OF FUNCTIONS 23

3.2.2 Transcendental Functions

Transcendental functions (Figure Figure 3.3) are functions that cannot be expressed
as finite combinations of algebraic operations. Unlike algebraic functions, they involve
processes such as infinite series, exponentiation, and logarithms. These functions play
a vital role in describing natural growth, decay, and scaling phenomena.

• Exponential Function: 𝑓(𝑥) = 𝑎𝑥 are used to model rapid growth or decay,
such as in population dynamics, radioactive decay, and compound interest.

• Logarithmic Function: 𝑓(𝑥) = log𝑎 𝑥 serve as the inverse of exponentials, com-
monly applied in measuring relative change, sound intensity (decibels), pH in
chemistry, and data compression in computer science.
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Figure 3.3: Exponential and Logarithmic Functions

3.2.3 Trigonometric Functions

The trigonometric functions 𝑓(𝑥) = sin 𝑥, cos 𝑥, tan 𝑥 describe the relationships be-
tween angles and the unit circle. They are fundamental in mathematics, physics, and
engineering because they naturally model oscillations, waves, and circular motion.
These functions are widely used in areas such as signal processing, alternating current
circuits, sound and light waves, and applied fields like surveying and mining for modeling
cyclic or repetitive patterns (see Figure Figure 3.4).
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• Sine (sin 𝑥): Range [−1, 1], period 2𝜋, zeros at 0∘, 180∘, 360∘.
Special values: sin 30∘ = 1

2 , sin 45∘ =
√

2
2 , sin 60∘ =

√
3

2

• Cosine (cos 𝑥): Range [−1, 1], period 2𝜋, zeros at 90∘, 270∘.
Special values: cos 30∘ =

√
3

2 , cos 45∘ =
√

2
2 , cos 60∘ = 1

2

• Tangent (tan 𝑥): Period 𝜋, undefined at 90∘, 270∘.
Special values: tan 30∘ = 1√

3 , tan 45∘ = 1, tan 60∘ =
√

3

0° 30° 45° 60° 90° 180° 270° 360°

−4

−2

0

2

4

sin(x) cos(x) tan(x)

Angle	(degrees)

f(
x)

Figure 3.4: Trigonometric Functions: sin(x), cos(x), tan(x) with Special Angles

In trigonometry, certain angles are called special angles because their sine, cosine, and
tangent values can be expressed in simple radical forms. These angles — such as
0∘, 30∘, 45∘, 60∘, and 90∘ — are frequently used in mathematics, physics, and engineering
for simplifying calculations.

3.3 Properties of Functions

Functions can be understood not only from their formulas, but also from the properties
they possess. These properties describe how inputs and outputs are related, and how
the function behaves across its domain and codomain (Figure Figure 3.5). Understand-
ing these characteristics helps in identifying whether a function is one-to-one, onto,
continuous, or monotone, which are fundamental concepts in both pure and applied
mathematics.
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3.3.1 Injective (One-to-One)

A function is called injective if different inputs always produce different outputs. In
other words, no two distinct values in the domain are mapped to the same value in the
codomain. For example, 𝑓(𝑥) = 2𝑥 + 3 is injective because every input corresponds to
a unique output, whereas 𝑓(𝑥) = 𝑥2 is not injective over the real numbers, since both
2 and −2 map to the same value, 4. Understanding injective functions is important in
applications where each output must correspond to a unique condition, such as tracking
ore quality measurements in mining.

3.3.2 Surjective (Onto)

A function is surjective if every element in the codomain is “covered” by the function,
meaning each possible output has at least one pre-image in the domain. For instance,
𝑓(𝑥) = 𝑥3 from ℝ to ℝ is surjective, while 𝑓(𝑥) = 𝑒𝑥 is not surjective over all real
numbers because it cannot produce negative values. Surjective functions are useful
when it is essential that all potential outcomes are achievable, such as ensuring full
coverage of production or resource allocation scenarios.

3.3.3 Bijective

When a function is both injective and surjective, it is bijective, establishing a perfect
one-to-one correspondence between domain and codomain. Every output comes from
exactly one input, and an inverse function always exists. For example, 𝑓(𝑥) = 𝑥 +
5 is bijective. In practice, bijective functions are valuable in simulations and data
transformations, where each output needs to be traced back to a unique input without
ambiguity.

3.3.4 Continuous

A function is continuous if its graph can be drawn without lifting the pen. Formally,
𝑓 is continuous at 𝑥 = 𝑐 if lim𝑥→𝑐 𝑓(𝑥) = 𝑓(𝑐). An example is 𝑓(𝑥) = sin 𝑥, continuous
for all real numbers, while 𝑓(𝑥) = 1/𝑥 is discontinuous at 𝑥 = 0. Continuity is crucial
for modeling systems with predictable behavior, such as smooth motion of machinery
or fluid flow in mining operations.

3.3.5 Monotone

Functions can also be monotone, consistently increasing or decreasing. A monotone
increasing function ensures that larger inputs always produce larger outputs, while a
monotone decreasing function produces smaller outputs for larger inputs. For example,
𝑓(𝑥) = 2𝑥 is monotone increasing, while 𝑓(𝑥) = −𝑥 is monotone decreasing. Mono-
tone functions simplify analysis and optimization, for instance in predicting total ore
extracted over time or planning production rates efficiently.
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Table 3.2: Applications of Functions in Real Life and Mining

Description Example_Function Example_Output
Science & Engineering

Science & Engineering Modeling position of moving
object

𝑠(𝑡) = 5𝑡 At t=3 s → s(3)=15 m

Science & Engineering Modeling velocity of moving
object

𝑣(𝑡) = 2𝑡 At t=4 s → v(4)=8 m/s

Economics & Finance

Economics & Finance Supply-demand curves 𝑃(𝑥) = 50 + 2𝑥 Selling 10 items →
P(10)=70

Economics & Finance Compound interest calculation 𝐴(𝑡) = 𝑃(1 + 𝑟)𝑡 Principal $1000, 5%
annual, 3 years →
$1157.63

Daily Life

Daily Life Temperature conversion 𝐹(𝐶) = 9/5𝐶 + 32 25°C → 77°F
Daily Life Daily spending tracking 𝑆(𝑑) = 10𝑑 + 5 Day 7 → $75

Mining & Resources

Mining & Resources Ore production rate 𝑄(𝑡) = 1000 + 50𝑡 After 5 days →
Q(5)=1250 tons

Mining & Resources Mineral concentration 𝐶(𝑥) = 0.8𝑥 + 5 x=10 → C(10)=13%
Mining & Resources Operational cost 𝐶𝑜𝑠𝑡(𝑞) = 5000 + 20𝑞 Produce 100 units →

Cost(100)=$7000
Mining & Resources Heap volume 𝑉 (𝐴) = 2𝐴 + 100 Area=50 m² →

V(50)=200 m³

3.4 Applications of Functions
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